منابع مشابه
Gauss-type Quadrature Rules for Rational Functions
When integrating functions that have poles outside the interval of integration, but are regular otherwise, it is suggested that the quadrature rule in question ought to integrate exactly not only polynomials (if any), but also suitable rational functions. The latter are to be chosen so as to match the most important poles of the integrand. We describe two methods for generating such quadrature ...
متن کاملQuadrature rules on unbounded interval
After some remarks on the convergence order of the classical gaussian formula for the numerical evaluation of integrals on unbounded interval, the authors develop a new quadrature rule for the approximation of such integrals of interest in the practical applications. The convergence of the proposed algorithm is considered and some numerical examples are given.
متن کاملWeighted quadrature rules with binomial nodes
In this paper, a new class of a weighted quadrature rule is represented as -------------------------------------------- where is a weight function, are interpolation nodes, are the corresponding weight coefficients and denotes the error term. The general form of interpolation nodes are considered as that and we obtain the explicit expressions of the coefficients using the q-...
متن کاملQuadrature Rules Based on the Arnoldi Process
Applying a few steps of the Arnoldi process to a large nonsymmetric matrix A with initial vector v is shown to induce several quadrature rules. Properties of these rules are discussed, and their application to the computation of inexpensive estimates of the quadratic form 〈f, g〉 := v∗(f(A))∗g(A)v and related quadratic and bilinear forms is considered. Under suitable conditions on the functions ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: gmj
سال: 2002
ISSN: 1572-9176,1072-947X
DOI: 10.1515/gmj.2002.405